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1 The calculation of log?2

1.1 Series

To calculate log 2, we will use an expression of Sebah and Gourdon[1].
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1.2 Absolute truncation error

Lemma 1. Suppose we want to approximate log?2 by
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The absolute truncation error E = |log2 — l3| is bounded by
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Proof. From (1) and (2), we can bound the absolute truncation error E as



follows:
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1.3 Reliable computation of log 2

Suppose we want to calculate log 2 such that the relative truncation error ¢
is bounded by |e| < |g]. If we choose the approximant 7" such that
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then we have
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which is what we need. In order to satisfy (9), it is necessary that
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For the implementation, we will calculate an upperbound of 7" using interval
arithmetic.
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